您的当前位置:首页 > 财富观察 > Mira 协议如何透过去中心化共识机制,让 AI 更诚实? 正文
时间:2025-06-19 20:09:46 来源:网络整理 编辑:财富观察
Mira提供了一个新方向:不靠单一AI决定答案,而是靠一群独立模型来“投票定真”。作者:Messari编译:Elponcho,链新闻在生成式AI蓬勃发展的今天,我们仍难以解决一个根本问题:AI有时会一
作者:Messari
编译:Elponcho,链新闻
在生成式 AI 蓬勃发展的今天,我们仍难以解决一个根本问题:AI 有时会一本正经地胡说八道。这种现象在业界被称为“幻觉”(hallucination)。而 Mira,一个专为 AI 输出验证而设计的去中心化协议,正试图透过多模型共识机制与加密审计,为 AI 增加“事实可信度”。以下,我们来看 Mira 是如何运作的、为什么它比传统做法更有效,以及它目前在真实应用中的成果。
本报导内容根据 Messari 发布的研究报告整理撰写。
Mira 并不是一个 AI 模型,而是一个嵌入式的验证层。当一个 AI 模型产出回应后(例如 chatbot 回答、摘要、自动化报告等),Mira 会将输出拆解成一连串独立的事实主张。这些主张会被送往其分散式验证网路,每个节点(即验证者)各自运行不同架构的 AI 模型,来评估这些主张是否为真。
每个节点都会针对主张给出“正确”、“错误”或“不确定”的判断,最后系统依据多数共识来做出总体决策。若大多数模型认可某个主张为真,该主张就会被核准;否则就会被标注、驳回,或提示警告。
这个过程完全透明、可审计。每一笔验证都会产生一个加密证书,标明验证过程中参与的模型、投票结果、时间戳记等,供第三方查验。
生成式 AI 模型(如 GPT、Claude)并不是决定论式的工具,它们是依照机率预测下一个字元,并不具备内建的“事实感知”。这样的设计让它们可以写诗、讲笑话,但也意味着:它们可能一本正经地制造虚假资讯。
Mira 提出的验证机制,正是要解决 AI 目前的四大核心问题:
幻觉泛滥:AI 编造政策、虚构历史事件、乱引文献的案例层出不穷。
黑箱运作:使用者不知道 AI 的答案从何而来,无法追溯。
非一致性输出:同样的问题,AI 可能给出不同答案。
中心化控制:目前大多数 AI 模型由少数几家公司垄断,用户无法查证其逻辑或争取第二意见。
目前的替代方案,例如人类审查(Human-in-the-loop)、规则式过滤器、模型自我校验等,都各有不足:
人工审查难以规模化,速度慢且成本高。
规则式过滤局限于预定场景,对创造性错误无能为力。
模型自审效果差,AI 经常对错误答案过度自信。
集中式 Ensemble虽然能交叉检查,但缺乏模型多样性,容易形成“集体盲点”。
Mira 的关键创新是将区块链共识概念引入 AI 验证。每一笔 AI 输出,在经过 Mira 后,会变成多个独立的事实陈述,由各式 AI 模型进行“投票”。只有在超过一定比例模型达成一致时,该内容才会被视为可信。
Mira 核心设计优势包括:
模型多样性:来自不同架构与数据背景的模型,降低集体偏误。
错误容忍:即使部分节点出错,也不会影响整体结果。
全链透明:验证纪录上链,可供审计。
可扩展性强:每日可验证超过 30 亿 tokens(约等于数百万段文字)。
无需人为干预:自动化进行,不需人工验证。
Mira 的验证节点由全球去中心化计算贡献者提供。这些贡献者被称为 Node Delegators (节点委任者),他们不直接操作节点,而是将 GPU 运算资源出租给经过认证的节点营运者。这种“计算即服务”模式大幅扩展了 Mira 的可处理规模。
主要合作节点供应商包括:
Io.Net:提供 DePIN 架构 GPU 计算网。
Aethir:专注于 AI 与游戏的分散式云端 GPU。
Hyperbolic、Exabits、Spheron:多家区块链计算平台,也为 Mira 节点提供基础设施。
节点参与者需通过一项 KYC 视讯验证程序,以确保网路唯一性与安全性。
根据 Messari 报告中的 Mira 团队数据,透过其验证层过滤后,大型语言模型的事实正确率从 70% 提升至 96%。在教育、金融、客服等实际场景中,幻觉内容的出现频率下降了 90%。重要的是,这些改进完全不需重新训练 AI 模型,仅透过“过滤”就能达成。
目前 Mira 已整合至多个应用平台中,包括:
教育工具
金融分析产品
AI chatbot
第三方 Verified Generate API 服务
整个 Mira 生态系涵盖超过 450 万名用户,每日活跃使用者达 50 万人以上。虽多数人未直接接触 Mira,但他们的 AI 回应,早已悄悄经过其背后的验证机制。
在 AI 产业日益追求规模与效率的同时,Mira 提供了一个新方向:不靠单一 AI 决定答案,而是靠一群独立模型来“投票定真”。这样的架构不仅让输出结果更可信,也建立起一种“可验证的信任机制”,并且具备高度可扩展性。
随著用户规模扩大与第三方审核渐趋普及,Mira 有潜力成为 AI 生态中不可或缺的基础设施。对于任何希望其 AI 能在真实世界应用中站得住脚的开发者与企业,Mira 所代表的“分散式验证层”或许正是关键拼图之一。
国内币币交易平台中易2025-06-19 22:22
10月31日国投瑞银瑞盈混合(LOF)C净值下跌0.18%,今年来累计下跌2.12%2025-06-19 22:19
Abraxas Capital大举积累ETH,3天提取超18万枚2025-06-19 22:08
10月31日格林创新成长混合C净值增长0.76%,近3个月累计上涨27.9%2025-06-19 22:05
挪威新成立比特币政策研究所,前财政部官员将出任秘书长2025-06-19 22:01
10月31日建信龙头企业股票净值下跌1.19%,近1个月累计下跌1.68%2025-06-19 21:59
隐私查询怎么查看 隐私查询怎么查看手机号2025-06-19 21:53
五叶神多少钱2025-06-19 21:33
10月31日圆信永丰兴研A净值下跌0.41%,近1个月累计下跌2.5%2025-06-19 20:53
idg股票2025-06-19 20:46
AVAX区块链费用激增背后:散户退场与鲸鱼入场的市场博弈2025-06-19 22:32
10月31日建信环保产业股票C净值增长0.32%,近3个月累计上涨12.86%2025-06-19 22:20
呼玛属于什么市什么县2025-06-19 22:07
比特币价格或接近顶部:稳定币流动与市场情绪揭示关键信号2025-06-19 21:59
Animoca 或将美国上市,能救 GameFi 吗?2025-06-19 21:46
电子货币交易平台合法2025-06-19 21:02
深脑链价格-深脑链价格走势图2025-06-19 20:42
8月份去西安穿什么-8月份去西安穿什么衣服合适2025-06-19 20:41
以太坊第 1 层网络收入骤减,原因何在?2025-06-19 20:41
10月31日建信创新驱动混合净值下跌1.02%,今年来累计下跌3.37%2025-06-19 20:06